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Challenging the point neuron dogma: FS basket
cells as 2-stage nonlinear integrators
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Interneurons are critical for the proper functioning of neural circuits. While often morpho-
logically complex, their dendrites have been ignored for decades, treating them as linear point
neurons. Exciting new findings reveal complex, non-linear dendritic computations that call for
a new theory of interneuron arithmetic. Using detailed biophysical models, we predict that
dendrites of FS basket cells in both hippocampus and prefrontal cortex come in two flavors:
supralinear, supporting local sodium spikes within large-volume branches and sublinear, in
small-volume branches. Synaptic activation of varying sets of these dendrites leads to
somatic firing variability that cannot be fully explained by the point neuron reduction. Instead,
a 2-stage artificial neural network (ANN), with sub- and supralinear hidden nodes, captures
most of the variance. Reduced neuronal circuit modeling suggest that this bi-modal, 2-stage
integration in FS basket cells confers substantial resource savings in memory encoding as
well as the linking of memories across time.
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ABAergic interneurons play a key role in modulating

neuronal activity and transmission in multiple brain

regions! 4. Among others, they are responsible for con-
trolling the excitability of excitatory and inhibitory cells, mod-
ulating synaptic plasticity, and coordinating synchrony during
neuronal oscillations>>~7. GABAergic interneurons come in a
variety of molecular profiles, anatomical features, and electro-
physiological properties>8-10. Despite this variability, many
interneuron types exhibit similar computations, the most com-
mon being a precise EPSP-spike coupling!!-13. As they innervate
a large number of cells, near the site of action potential initiation,
they are believed to generate a powerful widespread inhibition,
also referred to as an inhibitory blanket!4.

Fast Spiking basket cells (FS BCs) constitute one of the main
types of hippocampal and neocortical interneurons®%13:14, They
are part of the PV positive interneuron class, which also includes
the axo-axonic, chandelier, and bistratified subtypes®. FS BCs are
distinguished from other subtypes by their anatomical features,
synaptic connectivity patterns, and membrane mechanisms!2-1°.
These include the presence of calcium permeable AMPA
(cp-AMPA) receptors'416-18 the low expression of NMDA
receptors!?20, a weak backpropagation of APs!420, a low density
of sodium channels!'4, and a high density of potassium channels
in their aspiny dendritic trees!314.20,

A growing body of the literature recognizes the importance of
FS BCs in controlling executive functions, such as working
memory and attention as well as their role in neurodegenerative
disorders!421-23, However, little is known about the mechanistic
underpinnings of FS BC contributions to these functions. Most
studies have focused on the molecular and anatomical features of
FS BCs”13 and led to the dogma that FS BCs serve as “on—off”
cells, integrating inputs like linear—or at best sublinear—point
neurons! 31424,

This dogma is based on the assumption that FS BCs integrate
synaptic inputs in a linear manner, completely ignoring potential
dendritic influence. Dendritic integrative properties however, can
play a pivotal role in translating incoming information into
output signals?>2. In pyramidal neurons for example, this is
often done in highly nonlinear ways that facilitate memory and
other executive functions?”-2°.

Exciting new findings suggest a potentially similar contribution
of dendrites in interneuron function. Sublinear dendritic EPSP
integration along with supralinear calcium accumulations has
been reported in cerebellar stellate cells!!30. Moreover, certain
interneuron subtypes in the CAl area exhibit dendritic
supralinearities”-3! while in the CA3, both calcium nonlinearities
and sodium spikes in FS BC dendrites during sharp wave ripples
have been reported’. The exact nature of dendritic computations
in FS BCs, however, is unknown. As a result, whether a linear
point neuron or a more sophisticated abstraction—like the two-
stage3? or multistage integration proposed for pyramidal neurons
—can successfully capture their synaptic integration profile,
remains an open question.

To address these questions, we developed an elaborate toolset
that consists of (a) detailed, biologically constrained biophysical
models of hippocampal and cortical FS BCs, (b) reduced two-
stage integrate-and-fire models of these cells, (c) two-layer arti-
ficial neural network abstractions and (d) a large microcircuit
model of two-stage pyramidal, FS BC and dendrite targeting
(SOM) interneurons (See “Methods” and Fig. 1). We first char-
acterized the integration profiles of FS BC dendrites using the
detailed biophysical models. Synaptic stimulation predicted the
co-existence of two distinct modes within the same tree:
some dendrites exhibited supralinear while others sublinear
summation of inputs (Fig. 2, Supplementary Figs. 4 and 5).
Supralinear dendrites supported local, sodium-dependent spikes

Table 1 ANN regression performance (R2) for individual sets
of synapses in the eight model cells
ANN type 20 Synapses 40 Synapses 60 Synapses
Two-layer 0.8224 0.7432 0.6167
modular
ANN 0.8228 0.906 0.8339
0.8048 0.8709 0.797
0.7951 0.8563 0.8127
0.8242 0.8352 0.7752
0.9098 0.8857 0.8921
0.8879 0.8975 0.8827
0.8415 0.86 0.7801
Linear ANN 0.4541 0.3484 0.2856
0.6814 0.7462 0.5966
0.6436 0.5201 0.5625
0.5636 0.4475 0.4768
0.555 0.4919 0.4707
0.7832 0.7242 0.6758
0.6263 0.5463 0.44
0.6179 0.7039 0.4991
Comparison of ANN prediction accuracy (measured as the R2) for linear and two-layer modular
ANN reductions across all eight FS BC models, tested on three sets of synaptic inputs consisting
of 20, 40, or 60 activated synapses, respectively. Synapses were randomly distributed in various
ways/locations in the biophysical model cells and resulting firing rates were used as target
vectors for the ANNs. The two-layer modular ANN is clearly superior to the Linear ANN when it
comes to capturing location-induced firing-rate variability

(Supplementary Fig. 7) and were characterized by large volume
and low input resistance (Fig. 3), which are shaped by the com-
bination of dendritic length and diameter. Direct manipulation of
these anatomical features in biophysical models gated the
induction of sodium spikes and determined the integration mode
(Fig. 3). Using an array of different activation patterns, we found
that spatially dispersed inputs lead to higher firing rates than
inputs which are grouped within a few dendrites (Fig. 4), opposite
to respective findings in pyramidal neurons33. Moreover, these
different activation patterns result in a wide range of firing rates
that are better explained by a two-layer artificial neural network
(ANN) with nonlinear hidden layer activation functions rather
than a linear ANN (Figs. 5, 6, Table 1). Finally, in order to assess
the functional implications of these predictions, we built a
reduced network model of two-stage integrator neurons (Fig. 1d)
and showed that bi-modal nonlinear integration in FS BCs is
beneficial for memory engram storage as well as the linking of
memories across time (Fig. 7).

This work provides a systematic, cross-area analysis of den-
dritic integration in FS BCs and its functional implications. Our
findings challenge the current dogma, whereby interneurons are
treated as linear summing devices, essentially void of dendrites.
We predict that the dendrites of FS BCs in both hippocampal and
neocortical regions can operate in distinct nonlinear modes. As a
result, FS BCs, similar to pyramidal neurons32, are better repre-
sented by a two-stage integrator abstraction rather than a point
neuron. Importantly, nonlinear dendritic integration in these cells
offers substantial advantages for memory encoding in largescale
networks.

Results

Multi-compartmental, biophysical models. A total of eight
biophysical model neurons were built using realistic reconstruc-
tions of FS BCs from rat hippocampal areas (CA3, 5 cells)?3 and
from the prefrontal cortex of mice (three cells)3* (Supplementary
Fig. 5). To ensure biological relevance, ionic and synaptic con-
ductances as well as basic membrane properties of model
cells were heavily validated against experimental datal2-15-35-37
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Fig. 1 Modeling tools used to study dendritic integration in FS BCs and its functional implications. a Detailed, biophysically constrained multi-

compartmental models using realistic anatomical reconstructions. b Reduced two-stage integrate and fire models of FS BCs. ¢ two-layer ANN reduction
describing the FS BCs. d Reduced network model with simplified pyramidal, FS BCs and SOM + interneurons. FS BCs and SOM+ interneurons provide
feedback inhibition to excitatory neurons, with FS BCs targeting the somatic subunit while SOM+ neurons target the dendritic subunits. Memory encoding

afferents provide inputs to excitatory cell dendrites

(Supplementary Tables 1-4, Supplementary Figs. 1-3). Moreover,
for consistency reasons, the same set of biophysical mechanisms
(type and distribution) was used in all model cells.

Bi-modal dendritic integration in Fast Spiking basket cells. The
first step for deducing a realistic abstraction of FS BCs is the
systematic characterization of dendritic/neuronal integration
properties across a significant number of neurons and dendrites.
Towards this goal, we simulated gradually increasing excitatory
synaptic input to the dendrites of all neuronal models and
recorded the voltage response both locally and at the somal!l-32.
Increasing numbers of synapses (1-20) were uniformly dis-
tributed in each stimulated dendrite and activated synchronously
with a single pulse. For this particular experiment, sodium con-
ductances in somatic and axonal compartments were closed to
avoid backpropagation contamination effects3839 that were
detectable in some dendrites. We compared measured EPSPs to
their linearly expected values, given by the number of activated
inputs multiplied by the unitary EPSP. We found that within the
same dendritic tree, branches summate inputs either in a supra-
linear or a sublinear mode (Fig. 2, Supplementary Figs. 4, 5).
While there were differences in the number of dendrites and
proportions of sub- vs. supralinear dendrites, all of the
morphologies tested expressed both integration modes (Supple-
mentary Table 5). Moreover, while both modes have been sug-
gested in distinct interneuron types!!:31:40, their co-existence in
the same tree has yet to be reported.

To assess the robustness of this finding, we first performed a
sensitivity analysis whereby the cp-AMPA, NMDA, VGCCs,
sodium, and A-type potassium conductances were varied by
+20% of their control value. We found no changes in the
integration mode of dendrites and only insignificant alterations in

the spike threshold of supralinear dendrites (Supplementary
Fig. 6b). The only manipulation that eliminated supralinearity
was the blockade of dendritic sodium channels (Supplementary
Fig. 7).

Next, we examined whether the two modes are influenced by
the presence of gap junctions, which are well established in FS
BCs!441. Towards this goal, we connected pairs of hippocampal
and PFC cells with 10 electrical synapses (see “Methods”).
Presynaptic cells were synaptically activated so as to fire at
gamma rate frequency as per Tamas et al.*! and the integration
mode was assessed, as previously, in the dendrites of the
postsynaptic cell. We found no influence of gap junctions on
the integration mode, apart from a slightly increased membrane
potential (Supplementary Fig. 8).

The same effect was observed in simulations of more
physiological conditions such as active whisking*?. This was
done via weak synaptic activation of randomly selected dendrites
resulting in a somatic firing rate of 3 + 1 Hz*? (see “Methods”).
Both modes of dendritic integration remained unaffected by the
presence of in vivo like activity fluctuations (Supplementary
Fig. 9).

Taken together, the above simulations establish the robustness
of bi-modal dendritic integration and suggest that under
physiological conditions, FS BCs are likely to express both types
of dendritic integration modes.

Determinants of dendritic integration modes. Next, we sear-
ched for biophysical and/or anatomical determinants of the two
integration modes. Blockade of sodium conductances in the
dendrites eliminated the supralinear integration mode in all
morphologies tested (Supplementary Fig. 7), but this was not the
case for blockade of cp-AMPA, NMDA, VGCCs or A-type
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Fig. 2 Bimodal dendritic integration in multi-compartmental FS BC models. Examples of hippocampal (a) and PFC (d) FS BC morphological reconstructions.
Representative input-output curves from supralinear (b, ) and sublinear (¢, f) dendritic branches in hippocampal (top) and PFC (bottom) models, in
response to synaptic stimulation. Increasing numbers of synapses (from 1to 20 with step =1) are uniformly distributed within each stimulated branch and
are activated with a single pulse. The y-axis shows the amplitude of the dendritic EPSP caused by synaptic activation while the x-axis shows the expected
EPSP amplitude that would result from the linear summation of synaptic EPSPs. The dashed line indicates linear summation. Insets show

representative traces

potassium channels (Supplementary Fig. 6a). These simulations
indicate that sodium channels are the key ionic mechanism
underlying the supralinear mode. What remains unclear is why
these model cells also have sublinear dendrites, when the dis-
tribution and conductance values of sodium channels are the
same in all dendrites.

Since morphological features of dendrites were previously
shown to influence synaptic integration profiles3, we investigated
whether anatomical features correlate with the expression of each
integration mode. We found that the mean dendritic diameter
was highly statistically different (p-value =2.6041e—60) among
sub-(thinner) and supra-linear (thicker) dendrites in the
hippocampus (Fig. 3b), while in the PFC the dendritic length
was a better determinant of sub- (shorter) vs. supra-linearity
(longer) (p-value =4.1768e—04) (Fig. 3c). Length was less, yet,
important in the hippocampus (p-value = 0.0040) (Fig. 3a) while
diameter was not different among sub- and supralinear dendrites
in the PFC (p-value = 0.9458) (Fig. 3d). Dendritic volume and
input resistance consider both of the above anatomical features
and serve as robust morphological/electrophysiological determi-
nants for all dendrites in both areas (p-value=9.8516e—11,
3.9457e—45, respectively), (Fig. 3e, f).

Overall, we found that supralinear dendrites have high volume
and low input resistance while sublinear dendrites have smaller
volume and high input resistance (Fig. 3e, f). This can be
explained by considering the fast kinetics of cp-AMPA receptors

and A-type potassium channels in the dendrites of FS BCs. In
sublinear dendrites, where the input resistance is high (small
volume), coincident synaptic input induces a large, fast rising
EPSP which in turn strongly activates the A-type potassium
channels that rapidly repolarize the membrane, thus preventing
the branch from spiking3°. The opposite is true for supralinear
dendrites, where the low input resistance results is smaller
depolarizations that drive smaller A-type potassium currents,
enabling the branch to reach the sodium spike threshold. This
explanation is consistent with prior findings!43?,

To test the above proposition, we performed causal manipula-
tions whereby we fixed the diameter and length of all dendrites to
the mean values of first the supralinear and then the sublinear
class and assessed the effect on integration mode. We found that
setting the dendritic anatomy to that of a given class also dictated
the integration mode (Fig. 3h-j). These findings suggest that,
under the experimentally constrained conductance values for
sodium channels, morphology plays a crucial role in the ability of
a given dendrite to support local sodium spikes and express the
supralinear integration mode.

Effect of bimodal dendritic integration on neuronal firing. To
assess the impact of bimodal dendritic integration on neuronal
output, we simulated a large variety of different spatial patterns
of synaptic activation and measured the resulting firing rates.
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Fig. 3 Morphological determinants of dendritic integration mode. a, ¢ Total length distributions of supralinear vs. sublinear dendrites in the hippocampus
(a) and the PFC (c). Statistically significant differences are observed for both sub- and supra-linear dendrites, in both areas. (p-value < 0.0001 for
hippocampus and p-value < 0.01 for PFC, Student's t-test). b, d Same as in a, b, for mean dendritic diameter. Statistically significant differences are
observed in hippocampal (p-value <0.0001 Student's t-test) but not in PFC FS BCs. e, f. Dendritic Volume and dendritic Input resistance are common
discriminating characteristics among supralinear (larger, with low input resistance) and sublinear (smaller, with high input resistance) dendrites, for both
areas (p-value < 0.0001 Student's t-test for hippocampus and PFC, for Volume and Input resistance respectively). g Schematic illustration of morphological
features for supralinear and sublinear dendrites in hippocampus (left) and PFC (right). Traces indicate the first EPSP in supralinear and sublinear dendrites.
h-j Distributions of the number of supralinear and sublinear dendrites in both areas, under control conditions (h), with the mean diameter and length of all
dendrites set to the mean values of the supralinear class (i) and with mean diameter and length of all dendrites set to the mean values of the sublinear

class (j). Error bars indicate the minimum and maximum values

Specifically, we generated over 10,000 synaptic stimulus pat-
terns, which comprised of increasing numbers of excitatory
synapses. Synapses were either placed within a few, strongly
activated branches (grouped) or they were randomly dis-
tributed within the entire dendritic tree (dispersed). In all cases,
synapses were activated with random Poisson spike trains at
50 Hz (see “Methods”). Dendrites were selected at random and
inputs were distributed uniformly within selected dendrites. For
the dispersed case, we allocated 2, 5, or 10 synapses in randomly
selected dendrites, one at a time, while for the grouped case we

allocated 10, 15, 20, 30, and 60 synapses within an increasing
number of branches. In all cases, the number of activated
synapses increased gradually up to a maximum of 60, as this
number was sufficient to induce spiking at gamma frequencies
(30-100 Hz). This process was repeated k times (k = number of
dendrites in each cell) to ensure full coverage of the entire tree.
As expected given the two modes of dendritic integration, the
localization of activated inputs affected neuronal firing. For a
given number of activated synapses, dispersed activation led to
higher somatic firing rates than grouped activation, particularly
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between grouped and dispersed activation patterns. Insets depict representative traces from dispersed (top) and grouped (bottom) activation of

30 synapses. Red dots in a, b, show the synaptic allocation motif

during gamma related frequencies (30-100 Hz) both in hip-
pocampal (Fig. 4c) as well as in PFC FS basket cells (Fig. 4d).
Interestingly, this finding is opposite to what has been reported
for pyramidal neurons, in which synapse clustering increases
firing rates3244,

It was previously proposed that the combination of a small
diameter with an increased conductance of A-type potassium
channels in FS BCs underlies the preference for dispersed
synaptic allocations'*. To tests this hypothesis, we repeated the
above experiment after increasing the diameter (to 2 pm) and
blocking the A-type potassium conductance in all dendrites. As
shown in Fig. 4e, f, this manipulation resulted in very similar
firing rates irrespectively of the spatial arrangement of synapses,
thus eliminating the preference for dispersed allocation of
excitatory inputs.

Supplementary Fig. 12 shows the relative contributions of these
two mechanisms in our model cells. Disperse synaptic arrange-
ments benefit mostly from the dendritic morphology of FS BCs,
as setting the dendritic diameter to 2 um sharply decreases this
preference (Supplementary Fig. 12a, b). This is likely because
small diameters prevent signal loss, enabling the small depolar-
izations produced by dispersed inputs to reach and excite the
soma. Grouped arrangements on the other hand, are severely
hampered by the high conductance of the A-type potassium
channels!43%, as blockade of these currents enhances somatic
output (Supplementary Fig. 12¢, d). This is because grouped—but

not disperse—inputs induce large dendritic depolarizations which
strongly activate A-type channels. Since NMDA currents, which
would further boost and prolong the induced EPSPs, are very
small in these neurons!?, the hyperpolarizing effects of the A-type
currents are larger than the depolarizing effects of grouped
activation.

Another factor that contributes to disperse preference is
dendritic integration. Unlike pyramidal neurons where dendrites
are mostly supralinear and benefit from grouped inputs via the
induction of dendritic spikes?”-28:32, these neurons also have
sublinear dendrites which dampen the abovementioned benefit.
The higher the percentage of sublinear dendrites, the larger the
dampening, as: (1) the probability of allocating inputs in the few
supralinear dendritic branches is much smaller and (2) activating
sublinear dendrites with grouped inputs offers little/no advantage
as dendritic spikes do not occur in these branches. As shown in
Supplementary Table 7, the more sublinear dendrites a FS BC
model has, the weaker the response to the more restricted,
grouped input.

Taken together, this analysis reveals that the combination of a
high conductance of A-type channels (which penalizes grouped
inputs), the specific morphological features of FS BCs (which
favor dispersed inputs), and the presence of multiple sublinear
dendrites underlie the preference of these model cells for disperse
rather than grouped activation of their inputs, contrary to
pyramidal neuron models32.
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FS basket cells as two-layer artificial neural networks. The
nonlinear synaptic integration taking place within the den-
drites of cortical*> and CA1%%2% pyramidal neurons was pre-
viously described as a sigmoidal transfer function32. Based on
this reduction, a single pyramidal neuron was proposed to
integrate its synaptic inputs like a two-layer artificial neural
network, where dendrites provide the hidden layer and the
soma/axon the output layer. To assess whether a similar
mathematical formalism could be ascribed to FS BC models, we
constructed linear and nonlinear artificial neural networks (as
graphically illustrated in Fig. 5) and asked which of them can
better capture the firing rate variability in the biophysical
models.

Specifically, four types of feedforward, artificial neural
networks (ANNs) were constructed (see “Methods”). In
the two-layer modular ANN, supralinear, and sublinear
dendrites were simulated as two parallel hidden layers
consisting of a logistic sigmoid and a sublinear (y(x)=
(x+2)%7—-2) activation function, respectively (Fig. 5). The
number of activated synapses allocated to supralinear vs.
sublinear dendrites in the biophysical model,s was used as input
to the respective hidden layers. The output layer represented
the soma/axon of the biophysical model and consisted of a
linear activation function. In the linear ANN, there was only a
single hidden layer receiving input from all dendrites and
consisting of linear activation functions (Fig. 5). We also
constructed two ANNs with the exact same architecture as the
linear one, but with either (a) a logistic sigmoidal (two-layer
supralinear ANN) or (b) a sublinear y(x) = (x + 2)%7 — 2, (two-
layer sublinear ANN) activation function in the hidden layer
neurons (Supplementary Fig. 10). The latter ANNs represent FS
BCs with just one type of nonlinear dendrites.

For all eight FS BC model neurons the linear and two-layer
modular ANNs were trained using the number of synapses to
supra-/sublinear dendrites as inputs to the respective hidden
layers and the mean firing rate of the soma as target output. A
randomly selected 80% of our synaptic activation data set was
used to train the model and the rest 20% to test its generalization
performance (see “Methods”). Performance accuracy was esti-
mated based on regression analysis between the ANN-generated
firing rates and those produced by the biophysical models. Fits for
two representative model cells are shown in Fig. 6a-d, while the
overall performance for all eight model cells is shown in Fig. 6e.
Fig. 6f demonstrates the performance of both ANN types for a
dataset of the same power (number of inputs = 60), whereby the
location of the inputs varies. As evident from the results, the two-
layer modular ANN outperformed the linear ANN in all cases
tested.

However, the performance of the linear ANN was relatively
good. This can be attributed to the wide range of activated
synapses (2-60) which resulted in large differences in the somatic
firing, irrespectively of synapse location, and can thus be captured
by any linear model (similar findings were seen in pyramidal
model cells in Poirazi et al. 32). Therefore, we also assessed the
performance accuracy of linear and two-layer modular ANNs to
the more challenging task of discriminating between input
distributions corresponding to the exact same number of
synapses. To do so, we subdivided the data into input categories
corresponding to 20, 40, and 60 synapses, respectively. In these
more challenging conditions, the two-layer modular ANN clearly
outperformed the respective linear ANN, which failed to explain
the variance produced by differences in input location. This result
was consistent for all model cells as shown in Table 1.
Performance for the 60-synapse case is shown in Fig. 6f.
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Taken together, this analysis suggests that a two-layer artificial
neural network that considers both types of dendritic nonlinea-
rities is a much better mathematical abstraction for FS basket cells
than the currently assumed linear point neuron.

Bimodal nonlinear integration of FS basket cells enhances
memory encoding. In order to investigate the functional impli-
cations of our findings, we adapted a previously developed
canonical microcircuit model#®%7, to incorporate simplified two-
stage excitatory neurons, FS BCs and dendrite targeting (SOM+-)
interneurons (Fig. 1d and Supplementary Table 6). The model
includes inhibitory feedback connectivity, multi-dendrite and
perisomatic targeting interneurons. It implements plasticity-
related processes which act on multiple temporal and spatial
scales: calcium-dependent LTP/LTD with synaptic tagging and
capture (STC), NMDA dendritic spike plateaus, plasticity of
intrinsic neuronal excitability and homeostasis (see “Methods”).
The modeling of memory engrams is based on fear memory
studies in the hippocampus*®*°. The encoding of memories in
the neuronal population takes place after the concurrent pairing
of stimulation of afferents encoding an unconditioned stimulus
(e.g., contextual information) simultaneously with the condi-
tioned stimulus (e.g., shock). We evaluated the size of memory
engrams via the percentage of excitatory neurons which were
strongly activated during the recall of the memory (upon pre-
sentation of the conditioned stimulus alone), 24 h after encoding.

The size of the memory engram for the control condition was
calibrated according to experimental data for the CA1 area%%>0,

The network model was first trained to encode a single
memory?® (see “Methods”) using FS BCs with either (a) purely
linear or (b) bimodal (sublinear and supralinear) dendritic
subunits, as predicted by the compartmental modeling analysis
(Fig. 2). SOM + interneurons were modeled as having either
sublinear, linear, supralinear, or bimodal dendritic subunits
(Supplementary Fig. 11). In these simulations, synaptic inputs
to the FS BCs cells were either a) randomly distributed in all
dendrites (dispersed) or b) grouped in a few branches (~33%)
of all dendrites (grouped) (see “Methods”). The properties of
the resulting memory engram (i.e., the population of active
excitatory neurons activated by presentation of the uncondi-
tioned stimulus) were assessed by analyzing the activity of
excitatory neurons during recall 24 h after the learning event
(Fig. 7e).

Our results indicate that, compared to linear dendrites,
bimodal FS BC dendrites lead to significant reductions in the
size of the resulting memory engram (p-value = 5.8e—15), and
the mean engram firing rates (p-value =3.le-18 for linear-
dispersed, p-value = 7.2e—10 for linear-grouped) (Fig. 7a, b)
while they also increase the network firing sparsity (p-value =
0.00095 for linear-dispersed, p-value=0.00338 for linear-
grouped) (Fig. 7c). All of the above suggest that dendritic
bimodality in FS BCs promotes resource savings in the
encoding of new memories.
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Summarizing, the memory engram properties indicate that bi-
modal FS BC dendrites receiving dispersed inputs confer resource
consumption advantages to memory encoding by a) increasing
the sparsity of the population, b) recruiting fewer engram
neurons and c) reducing the overall network excitability. The
above findings were unaffected by the presence of either linear,
supralinear or bi-modal SOM + model dendrites (Supplementary
Fig. 11).

Finally, we also assessed the role of FS-BC nonlinearities in
memory linking, by encoding two memories separated by 1 or
24 h in the same network model and measuring the population
overlap of the resulting memory engrams. According to
previous work444649 memories learned in close temporal
proximity (e.g., 1h apart) display increased engram overlap
compared to distant memories (24h apart). Overlapping
storage is also associated with behavioral binding of the two
memories and has been proposed to underlie the linking of
memories across time#®. We found that linear FS BC dendrites
result in substantially larger engram overlaps in the circuit
model compared to bi-modal dendrites (Fig. 7d), for the 1-h
case. These overlaps are in fact significantly larger than the
experimentally reported ones*® (which are about ~20%),
suggesting that the two memories may interfere with one
another. Taken together, our network modeling analysis
suggests a beneficial role of nonlinear dendrites in FS BCs

with respect to memory encoding, storage capacity as well as
the binding of memories over time.

Discussion

The role of dendrites in interneuron computations is a rapidly
emerging and debatable subject!440, Several recent reports pre-
sent exciting findings according to which dendrites may serve as
key players/»11143031.4051  For example, sodium spikes and
supralinear calcium accumulation have recently been reported in
the dendrites of FS BCs’, yet the consensus still favors the linear
point neuron dogma!314, The present study provides new insight
into this ongoing debate by systematically analyzing the dendritic
integration mode of FS BCs in two brain areas: The Hippocampus
and the PFC. We do so, using an extensive set of computational
tools that extends from detailed biophysical single cell models, to
reduced integrate-and-fire single cell and circuit models as well as
artificial neural network models (Fig. 1). We predict that den-
drites of both cortical and hippocampal FS BCs operate in one of
two modes of synaptic integration: supralinear or sublinear
(Fig. 2). Supralinearity is due to the generation of dendritic
sodium spikes (Supplementary Figs. 7), which are in turn gated
by the morphology (Fig. 3) of dendrites. Moreover, we find that
somatic output is influenced by the spatial distribution of acti-
vated synapses, with dispersed input inducing higher firing rates
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than grouped activation. This feature is opposite to pyramidal
neurons®2#4 and is attributed to a) the presence of sublinear
dendrites in FS BCs and b) the small dendritic diameter!4->2,
increased A-type current and fast EPSP kinetics of cp-AMPA
receptors found in these cells'43? (Fig. 4, Supplementary Fig. 12).
Due to these properties, a two-layer modular artificial neural
network abstraction with both sub- and supra-linear hidden
neurons (Fig. 5) captures the spiking profile of biophysical neu-
rons with much higher accuracy than a linear ANN, analogous to
a point neuron. This is true for all of the 8 morphological
reconstructions of FS BCs tested and is more evident for datasets
in which the number of inputs is fixed but their location varies
(Fig. 6, Table 1). This is because discriminating the effect of input
location as opposed to input strength is a much more challenging
task and pushed the linear ANN to its performance limits. Finally,
we show that such a two-stage integration model facilitates the
efficient encoding, storage and discriminability of memories in a
biologically relevant circuit model across time (Fig. 7).

A bimodal dendritic integration is predicted for all hippo-
campal and PFC morphologies analyzed. Supralinearity was
found to be due to the occurrence of dendritic sodium spikes
(Supplementary Fig. 7). Several mechanisms can influence the
generation of such dendritic spikes: ionic conductances (primarily
of sodium currents but also potassium currents) and morpholo-
gical features. In our models, biophysical mechanisms are con-
strained by existing experimental data and dendritic sodium
conductances are kept to a minimum (10 times smaller than the
somal?), so as to minimize the probability of non-physiological
dendritic spiking. Sensitivity analysis further demonstrates that
results are robust to physiological variations in a wide range of
active dendritic conductances (Supplementary Fig. 6). These
findings strongly suggest that dendritic spiking in certain den-
drites of FS basket cells is highly likely to occur under physio-
logical conditions, in line with recent experimental reports’.

Apart from sodium currents as a universal enabling mechan-
ism, we find a key role of morphology in gating local dendritic
spikes. A combination of dendritic length and mean diameter, or
otherwise the dendritic volume and input resistance, is statisti-
cally different between sub- (smaller) and supralinear (larger)
dendrites across all morphologies tested (Fig. 3). The inability of
small-volume dendrites (Fig. 3f) to support sodium spikes is
attributed to their high input resistance (Fig. 3f), fast kinetics of
calcium permeable AMPA receptors and the high density of A-
type potassium channels'#3°. This combination results in large,
fast EPSPs that are very efficient in activating I, currents, which
in turn repolarize the membrane'#. This mechanism has been
previously proposed by others*?, is supported by our morphology
and I, manipulation experiments (Fig. 4), and is in line with
other studies reporting a similar effect of morphology on the
ability of dendrites to generate local spikes#3%3.

Our simulations predict the co-existence of both sublinear and
supralinear dendrites in all FS BCs models (Fig. 2, Supplementary
Figs. 4-9). Similar bimodal dendritic integration has been
reported in hippocampal CA1 pyramidal neurons?7-28-32>4 and
predicted in PFC pyramidal neurons®.

The existence of sublinear dendritic branches supports the idea
of inhibitory neurons acting as coincidence detectors by aggre-
gating spatially disperse and nearly synchronous synaptic
inputs!4, Moreover, sublinear dendrites can compute complex
nonlinear functions similar to those computed by sigmoidal
dendrites®?, thus substantially extending the processing capacity
of these neurons compared to a linear integrator. Why have two
types of nonlinearity then?

Our network modeling predicts that the presence of both types
of nonlinearities confer substantial benefits to network compu-
tations and especially to memory encoding. We find that bimodal

nonlinearities in the dendrites of FS BCs, enables the encoding of
new memories within a smaller neuronal population, thus
increasing sparsity and storage capacity. These nonlinearities also
facilitate the interaction of memories over time, via decreasing the
possibility of interference (Fig. 7).

Artificial neural network analysis demonstrates that a FS basket
cell is better described by a two-stage abstraction that incorpo-
rates both modes of dendritic integration (Figs. 5, 6). This work,
along the lines of the two-stage model proposed for pyramidal
neurons32, strongly challenges the prevailing point neuron
dogma. The two-stage abstraction is supported by experimental
reports of dendritic sodium spikes and supralinear calcium
accumulations”-31 while it also explains sublinear dendritic
integration!3145> providing a unifying framework for inter-
neuron processing.

Possible limitations of our work include the imprecise mod-
eling of ionic and synaptic mechanisms given the shortage of
sufficient information for FS BCs models. This limitation is
counteracted by the sensitivity analysis of the mechanisms that
mostly influence our findings and their consistency across several
cortical and hippocampal morphologies. Another limitation is the
lack of inhibitory inputs (except from the autaptic GABAa cur-
rent that is incorporated in all models). Inhibitory inputs consist
of just 6% of all incoming contacts in Fast Spiking
interneurons®14. Thus, our results are unlikely to be affected by
inhibitory inputs. FS basket cells in the hippocampus and the
neocortex are highly interconnected by gap junctions!441, that
can speed the EPSP time course, boost the efficacy of distal inputs
and increase the average action potential frequency after repeti-
tive synaptic activation!4. All of these effects would contribute to
stronger responses but unless gap junctions are spatially specific
to certain branches and not others, they are unlikely to influence
the nonlinear integration modes of dendrites. Finally, given the
great anatomical and biophysical heterogeneity of different
interneurons®3, whether similar dendritic computations are
present in other interneuron subtypes will need to be investigated
on a case-by-case basis.

Conclusion

This work provides a novel view of dendritic integration in FS
basket cells that extends in hippocampal and cortical areas. Here
we suggest new reductionist models for interneuron processing,
in which dendrites play a crucial role. Experimental validation of
these new models is likely to change the way we think about
interneuron processing, attribute new and exciting roles to FS
basket cells and open new avenues for understanding interneuron
contributions to brain function.

Methods

Compartmental modeling. All eight model neurons were implemented within the
NEURON simulation environment (version 7.3)°¢. Detailed morphological
reconstructions of the five Fast Spiking basket cells of the rat Hippocampus (CA3)
were adopted from Tukker et al.3, via the NeuroMorpho.org database (Fig. 1). Due
to the lack of axonal compartments for some cell reconstructions, we used the axon
from the B13a.CNG.swc reconstruction for all five hippocampal neuron models.
The three PEC morphologies were adopted from Rotaru et al.34, via the Neuro-
Morpho.org database (Fig. 1) and included their respective axons.

Dendritic branches with mean diameter values larger than 1.2 um were
excluded from all simulations and data analysis procedures, based on Emri et al.>2.
The NLM Morphology Viewer Software was used to transform morphological
reconstructions into .hoc files.

Biophysical properties. All model neurons were calibrated with respect to their
biophysical properties so as to conform to experimental data. The same active and
passive properties were used in all model cells, with the exception of very small
modifications in the conductances of somatic/axonal sodium and delayed rectifier
potassium channels (Kdrin) (Supplementary Tables 1 and 2). The latter were
necessary to account for the influence of morphological variability on neuronal

responses according to experimental evidence!4.
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Conductances of all active ionic mechanisms were adapted from
Konstantoudaki et al.>’. Both hippocampal and PFC models include fast voltage-
dependent sodium channels (gnafin), delayed rectifier potassium channels
(gkdrin), slow inactivation potassium channels (gslowin), slow calcium dependent
potassium channels (gkcain), A-type potassium channels for proximal and distal
dendritic regions (gkadin, gkapin), h currents (ghin), and L-, N- and T-type
voltage-activated calcium channels (gcal, gcan and gcat, respectively). Sodium
current conductances were substantially larger in axonal compared to somatic
compartments, which were in turn an order of magnitude larger than dendritic
sodium conductances!3. Moreover, dendritic branches located beyond 100 um
from the soma (distal dendrites) had smaller sodium conductances than proximal
branches (located less than 100 pm from the soma) as per'43°. A calcium buffering
mechanism was included in all compartments. Details about all biophysical
mechanisms are listed in Supplementary Table 2.

Synaptic conductances. Calcium permeable (GluR2-lacking) AMPA, NMDA and
autaptic GABAa synaptic currents were incorporated in all model cells. Synaptic

weights were validated so as to reproduce the current waveforms depicted in Wang
and Gao!? and Bacci et al.”> and are shown in Supplementary Table 4 and Sup-

plementary Fig. 2.

Electrophysiological validation. All model neurons were heavily validated against
experimental data in order to ensure biological plausibility. Averaged electro-
physiological values for the model cells and respective experimental values are
shown in Supplementary Table 3.

Bi-modal dendritic integration in Fast Spiking basket cells. To map the den-
dritic integration profiles of our model neurons, we activated increasing numbers
of synapses (1-20, with step 1) in each dendrite and recorded the voltage responses
both locally and at the cell body for 100 ms. Synaptic input was simulated as a
single depolarizing pulse, as per Poirazi et al. 2°. Sodium conductances in somatic
and axonal compartments were set to zero in order to avoid backpropagation
effects! 439, Twelve autaptic events were also activated in somatic compartments®.

Integration modes were deduced by comparing the measured dendritic/somatic
responses (Actual EPSP amplitude) against what would be expected if synaptic
depolarizations summed linearly (Expected EPSP amplitude). A dendrite was
termed supralinear if Actual responses were larger than Expected, even if this was
true only for a short range of synaptic inputs. A dendrite was considered sublinear
if the Actual EPSPs were smaller than the Expected values for all synaptic inputs
tested.

Sensitivity analysis was performed by modifying the conductances of NMDA,
calcium-permeable AMPA receptors, Voltage gated Calcium Channels (VGCCs),
Sodium, and A-type (proximal and distal) mechanisms by +20%. Increasing
numbers of synapses (for 1-40) were used to assess possible changes in single
branch integration. Results for all manipulations are shown in Supplementary
Fig. 4.

Modeling of gap junctions. Ten gap junctions (GJs) with 0.4 uS conductance were
simulated as shown in Tamas et al.*l. Two in the soma and eight in randomly
selected proximal dendrites, all located in neuron b (post synaptic neu-

ron) and originating from ten proximal dendrites of neuron a (pre synaptic neu-
ron). The current generated by a gap junction (Ig;) was modeled as:

I = ggap("post - Vpre)a (1)

where ggap, Vpost> and Vpre are the GJ conductance, the post- and the pre-synaptic
membrane potentials, respectively, as per Minecci et al.%%. Neuron a, exhibits firing
with gamma band frequency of 30-33 Hz, in response to 50Hz poisson spike
train stimulation of randomly allocated synapses, Tamas et al.4l. In Neuron b, we
simulated the typical, single burst activation of uniformly allocated synapses (1-20,
with step 1) in each dendrite respectively, while eliminating 90% of the sodium
conductances in axosomatic compartments. This protocol was applied to

one connected pair of PFC and one connected pair of hippocampal neurons.
Results are representative of the other neuron models.

Modeling in vivo like background fluctuations. Randomly selected dendrites
received sparsely activated synapses (32 excitatory and 8 inhibitory) so as to
generate 3 + 1 Hz firing in soma thus simulating active whisking conditions
according to Gentet et al.%!. The typical single burst activation of uniformly allo-
cated synapses (1-20, with step 1) was applied in each stimulated dendrite.
respectively. Simulations were performed under conditions of 90% blockade

of sodium conductances in axosomatic compartments. This protocol was applied to
one PFC and one hippocampal pair of neurons and is representative to all neuron
models.

Morphological determinants of dendritic integration mode. Mean dendritic
diameter and total dendritic length for supralinear and sublinear dendrites were
measured for all reconstructed neurons. Dendritic volume was calculated according

to the following formula:

diam\ 2
V=rm- <$) length(um?®) (2)
Dendritic Input Resistance was calculated according to the following formula:
DV
Ry, == (MOhm), 3)

where I = —100 pA (4) injected in each dendritic branch and DV is the
generated IPSP.

Statistical analysis for all morphological features was performed using Student’s
t-test with equal sample sizes and assuming unequal variances (Welch’s t-test).

Synaptic stimulation protocols. In all stimulation protocols, inputs were activated
using a 50 Hz Poisson spike train. The maximum number of activated synapses was
60, as it was sufficient to induce firing at gamma related frequencies (30-100 Hz).
The spatial arrangement of activated synapses was defined according to each of the
following stimulation protocols:

Randomly dispersed synaptic stimulation protocol. Different numbers of
synapses (Nsyns = 2-60) were randomly placed on randomly selected dendrites.
For a given number of synapses Nsyn, at each allocation step, one dendrite was
chosen at random and one synapse was placed at a random location within this
dendrite. For the selected dendrite, synaptic location was randomly changed five
times. This process was repeated N times, where N was the number of dendrites for
each model cell. This process ensured a random distribution of activated synapses
within the entire dendritic tree of each modeled neuron.

Grouped synaptic stimulation protocol. The only difference from the dis-
persed protocol is that each selected dendrite received a group (of size Sclu = 10,
15, 20, 30, and 60) of synapses as opposed to a single synapse. For example, for
Nsyn = 60 and Sclu = 20, a total of three dendrites were randomly selected to
receive 20 synapses each. We followed the same experimental design as in the
dispersed protocol. Thus, for a given number of synapses Nsyn, at each allocation
step, one dendrite was chosen at random and Nsyn synapses were placed at ran-
dom locations within this particular dendrite. For the selected dendrite, synaptic
location was randomly changed five times. This process was repeated N times,
where N was the number of dendrites for each model cell.

Artificial neural network models. We constructed feedforward, two-layer, arti-
ficial neural networks with different activation functions in the hidden layer and a
single-unit linear output. The hidden layer received a vector containing the number
of activated synapses in each dendrite as input. The output layer was a linear layer
with a single output, the predicted spiking frequency. We used four different
configurations for the hidden layer nonlinearities: (a) in the linear case, the hidden
layer was a linear layer with five units followed by a linear activation function (or a
ReLU activation function) (b), in the supralinear case the hidden layer was a five-
unit linear layer followed by the logistic sigmoid activation function (c) in the
sublinear case the hidden layer was again a five-unit linear layer followed by the
activation function y = (x+2)%7-2. (d) The bimodal network contained both
supralinear and sublinear activation functions. The hidden layer was split in two
linear layers. The first part received the input vector of the supralinear dendrites
and had a sigmoid activation function and the second part the input of the sub-
linear dendrites and had the same sublinear activation function as in (c). Both
layers projected to the single-unit output linearly. The network was trained using
stochastic gradient descent with backpropagation, and the Adam optimization
algorithm for the learning rate. The loss function used was the mean squared error
(squared L2 norm) between the network predictions and actual firing rates. In
order to maintain correspondence with biophysical reality, we restricted our ANN
weight updates to be positive, in line with our biophysical models that had

only excitatory inputs. Please note that under these conditions, a ReLU function is
equivalent to a positive-only linear transfer function. The simulations were
implemented in PyTorch 0.4.0 using Python 3.6.6 and numpy 1.14.5.

For each cell, we constructed an ANN that corresponded to its number of
supralinear/sublinear dendritic units. Performance accuracy was estimated
according to the correlation between predicted (by the ANN) and actual mean
firing rates generated by the biophysical models for a wide range of stimulation
protocols.

ANN training/testing datasets. Input to the four ANNs consisted of the number
of synapses located in the modeled dendritic branches and the target output
consisted of the mean firing rate generated by the biophysical models in response
to synaptic stimulation. In the biophysical model, these synapses were activated
with the Dispersed and Grouped protocols described above, as well as five new
protocols using the same pattern of repetition trials as described above: (1) Ran-
domly dispersed or grouped activation of synapses (e.g., Nsyn = 2-60) in the entire
dendritic trees. (2) Randomly dispersed or grouped synaptic allocation on supra-
linear dendrites or on sublinear dendrites, respectively. Linear Regression plots
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shown in Fig. 6 and Supplementary Fig. 10 for Cells 2 and 7 are representatives of
all cells, as shown in Fig. 6.

Linear regression and statistical analysis. We calculated the correlation coeffi-
cient (R2) between actual mean firing rates (Target rates, in Hz) generated from the
biophysical models and predicted mean firing rates (Predicted rates, in Hz) gen-

erated by the trained ANNS, respectively. Statistical analysis between Target and

Predicted firing rates was performed using Student’s ¢-test.

Canonical microcircuit model. A previously published model network for con-
textual memory formation/recall in hippocampal neuronal populations was adapted
and used here®. The network consists of excitatory and inhibitory neurons which are
both modeled as two-stage integrators, based on experimental data primarily from the
CA1 area of the hippocampus. Neurons are modeled as two-layer units, consisting of
a somatic spiking unit and independent dendritic subunits (20 units for excitatory
neurons, ten units for interneurons) capable of nonlinear synaptic integration, den-
dritic spike initiation and compartmentalized plasticity. Each dendritic subunit inte-
grates the incoming synaptic inputs which reside on it independently, as follows:

dv,
Tthb = %: ijsynt?(t - tx:/) -V (5)

where Vy, is the dendritic depolarization, i, Ey,, are constants (Model parameters and
constants are listed in Supplementary Table 1), w; is the weight of synapse j and ¢;; are
the timings of incoming spikes. Somatic spiking is given by an integrate and fire
model with adaptation:

dv
CE: —&.(V = Ep) — ganp(V — Ex) + I (£) (6)
d
TAHP gstHP = apupS(t — typike) — Sanps )

where V is the somatic voltage, C is the somatic membrane capacitance, g7, the leak
conductance, Ej, the resting potential (0 mV), gapp is the conductance of the adap-
tation (afterhyperpolarization, AHP) current and Ex is the AHP reversal potential.
Tapp is the adaptation time constant, a,pp, the quantal increase of gapp after a
somatic spike which occurs at time fg. The synaptic current reaching the soma Iy,
is given by

Isyn(t) = gsy-n Z (Vbn(t)) - IPSC(t) (8)

where IPSC(t) is the inhibitory input that the neuron receives from FS BC inter-
neurons and gqy, is the dendritic coupling constant. Somatic spiking occurs when the
somatic voltage reaches the spike threshold yom,. The backpropagating action
potential is modeled by a depolarization component Vi,4p which is added to the
depolarization of all the dendritic subunits. Vi,zp (2):

Viap(t) = Epape ™7 ©)

Epap is the peak of the backpropagating depolarization and 7y4p is the time constant
of the bAP. The voltage response function for sublinear dendrites as a function of total
excitatory depolarization Eqy,, was given by the power-law function V= (Esyn)o‘7.

Calcium influx AC,,, in synapse after a presynaptic spike is dependent on the
depolarization of the dendritic subunit using a sigmoid rule that mimics the voltage
dependence of the NMDA receptors as follows:

1

AC,,, = g — 10
sy Ca 1+ exp(f VES,?,(,"V) ( )

where ac, is the maximum Ca*2 influx and
V="V, + Viap (11)

Synapses are initially allocated randomly in dendritic subunits, given initial weight

Winir. Calcium influx in a synapse during stimulation is the determinant of plasticity
following the synaptic tagging and capture model#: Low-to-intermediate levels of

calcium after stimulus presentation lead to the generation of a de-potentiation synaptic
tag while high levels of calcium lead to a potentiation tag (see Supplementary Table 7).
The consolidation of synaptic tags into the weight of synapses is dependent on the level
of Plasticity-Related-Proteins (PRPs). We assume somatic PRP synthesis in the version
of the model used here. The level of PRPs is increased to its maximum value (1.0)

when the total calcium level exceeds the threshold Opgp and decays exponentially with
time constant 7prp. The sum of available proteins determines the rate of consolidation
of synaptic tags into the permanent weights w of synapses. Synaptic weights are subject
to homeostatic plasticity, which normalizes the total synaptic input to a neuron over

long time scales:
dw; W
—J_ €1 (1 — L) (12)
dt 1y

WinitN syn
where Wiy is the initial synapse weight of synapses, Ny, the total number of synapses
in the neuron and 7y the time constant of homeostatic synaptic scaling.
We adapted the previously published model as follows:

Interneurons were modeled with ten dendritic subunits

Interneuron dendrites can be either sublinear, supralinear, linear, or an equal
mix of supralinear and sublinear

The interneuron population was divided in 50% Fast spiking interneurons and
50% SOM interneurons.

SOM interneuron dendrites were typically sublinear (although linear/nonlinear
ones were also tested), while we varied the nonlinearity of dendrites in
FS BC cells.

Simulation of memory engram formation takes place according to the following
protocol: For each memory being encoded, the afferents which represent the
memory are divided in two, same-sized subpopulations: the conditioned
(analogous to context) and the unconditioned (analogous to shock) populations.
For encoding, these populations are synchronously activated while simulating
detailed voltage dynamics. After each encoding, an interstimulus interval is
simulated that varies in duration. After memories are encoded, another inter-
stimulus interval of 1 day is applied to simulate the effects of homeostasis. The
memory engram properties are then assessed by presenting the conditioned
stimulus only, and measuring the response of the entire neuronal population. The
excitatory neurons with firing rates >10 Hz during recall are considered part of the
engram. The sparsity of the response to each memory was evaluated using the
Treves—Rolls sparsity metric®2.

In the first set of simulations one memory was encoded in the neuronal
population via the activation of the memory-encoding presynaptic inputs. In the
second set of simulations, two memories were encoded in the same population with
1 or 24 h interstimulus interval between them. After encoding, the memories were
reactivated and the firing rates of the excitatory population were used to assess the
overlap of their engrams.

The connectivity parameters of the model were calibrated following Bezaire
et al.%3 under the constraint that ~25-30% of the excitatory population participates
in the memory engram. The distribution of incoming synapses to FS BC dendrites
was either dispersed (synapses allocated uniformly randomly to all dendritic
subunits) or grouped (uniformly allocated to ~33% of dendrites). During the
control simulations, SOM+ dendrites were sublinear and BS dendrites were
bimodal. Additional results were obtained for supralinear, linear, and bimodal
SOM+ dendrites, shown in Supplementary Fig. 11.

Plasticity rules. In summary the model implements four types of plasticity rules:

(1) Calcium dependent LTP/LTD with somatic protein synthesis. LTP/LTD is
induced and consolidated based on the synaptic tagging and capture
model®465,

(2) Voltage-dependent calcium influx which simulates the activation of
NMDARSs, including NMDA-dependent spike plateaus triggered when the
dendritic voltage exceeds the dendritic spike threshold®®.

(3)  Plasticity of intrinsic neuronal excitability, amounting to a learning-induced
increase in the somatic excitability of pyramidal neurons®”:68, largely
attributed to the CREB transcription factor®. We simulate the increased
excitability through the transient reduction of the AHP current in the
neurons in which somatic PRP synthesis is triggered for ~12h after the
learning event.

(4) Homeostatic plasticity: The effect of homeostasis on synaptic weights is
modeled using the synaptic weight scaling rule (Turrigiano 2008)%° during a
simulated period of 24 h after learning. According to this rule, the total
synaptic weight of a model neuron remains constant.

The parameters and constants used in the network model are listed in
Supplementary Table 7. The network model was written in C++ and run on the
high performance computer cluster of the Poirazi lab. Data analysis was done with
Python library numpy.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Simulations were performed on a High-Performance Computing Cluster equipped with
312 CPU cores and 1.150 Gigabytes of RAM, under 64-bit CentOS 6.7 Linux. The source
code and the data are publicly available in ModelDB (URL: http://senselab.med.yale.edu/
ModelDB/showModel.cshtml?model=237595).
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